導(dǎo)語:現(xiàn)代中國歷史最早的數(shù)學(xué)專著是1984年在湖北江陵張家山出土的成書于西漢初的漢簡《算術(shù)書》。以下是關(guān)于數(shù)學(xué)發(fā)展史的手抄報資料,希望對大家有所幫助!
關(guān)于數(shù)學(xué)的手抄報圖片01
關(guān)于數(shù)學(xué)的手抄報圖片02
關(guān)于數(shù)學(xué)的手抄報圖片03
【數(shù)學(xué)發(fā)展史手抄報資料】
中國數(shù)學(xué)發(fā)展的高峰
唐朝亡后,五代十國仍是軍閥混戰(zhàn)的繼續(xù),直到北宋王朝統(tǒng)一了中國,農(nóng)業(yè)、手工業(yè)、商業(yè)迅速繁榮,科學(xué)技術(shù)突飛猛進。從公元十一世紀到十四世紀﹝宋、元兩代﹞,籌算數(shù)學(xué)達到極盛,是中國古代數(shù)學(xué)空前繁榮,碩果累累的全盛時期。這一時期出現(xiàn)了一批著名的數(shù)學(xué)家和數(shù)學(xué)著作,列舉如下:賈憲的《黃帝九章算法細草》﹝11世紀中葉﹞,劉益的《議古根源》﹝12世紀中葉﹞,秦九韶的《數(shù)書九章》﹝1247﹞,李冶的《測圓海鏡》﹝1248﹞和《益古演段》﹝1259﹞,楊輝的《詳解九章算法》﹝1261﹞、《日用算法》﹝1262﹞和《楊輝算法》﹝1274-1275﹞,朱世杰的《算學(xué)啟蒙》﹝1299﹞和《四元玉鑒》﹝1303﹞等等。 宋元數(shù)學(xué)在很多領(lǐng)域都達到了中國古代數(shù)學(xué),也是當時世界數(shù)學(xué)的巔峰。其中主要的工作有:
公元1050年左右,北宋賈憲(生卒年代不詳)在《黃帝九章算法細草》中創(chuàng)造了開任意高次冪的“增乘開方法”,公元1819年英國人霍納(william george horner)才得出同樣的方法。賈憲還列出了二項式定理系數(shù)表,歐洲到十七世紀才出現(xiàn)類似的“巴斯加三角”。(《黃帝九章算法細草》已佚)
公元1088—1095年間,北宋沈括從“酒家積罌”數(shù)與“層壇”體積等生產(chǎn)實踐問題提出了“隙積術(shù)”,開始對高階等差級數(shù)的求和進行研究,并創(chuàng)立了正確的求和公式。沈括還提出“會圓術(shù)”,得出了我國古代數(shù)學(xué)史上第一個求弧長的近似公式。他還運用運籌思想分析和研究了后勤供糧與運兵進退的關(guān)系等問題。
公元1247年,南宋秦九韶在《數(shù)書九章》中推廣了增乘開方法,敘述了高次方程的數(shù)值解法,他列舉了二十多個來自實踐的高次方程的解法,最高為十次方程。歐洲到十六世紀意大利人菲爾洛(scipio del ferro)才提出三次方程的解法。秦九韶還系統(tǒng)地研究了一次同余式理論。
公元1248年,李冶(李治,公元1192一1279年)著的《測圓海鏡》是第一部系統(tǒng)論述“天元術(shù)”(一元高次方程)的著作,這在數(shù)學(xué)史上是一項杰出的成果。在《測圓海鏡?序》中,李冶批判了輕視科學(xué)實踐,以數(shù)學(xué)為“九九賤技”、“玩物喪志”等謬論。
公元1261年,南宋楊輝(生卒年代不詳)在《詳解九章算法》中用“垛積術(shù)”求出幾類高階等差級數(shù)之和。公元1274年他在《乘除通變本末》中還敘述了“九歸捷法”,介紹了籌算乘除的各種運算法。公元1280年,元代王恂、郭守敬等制訂《授時歷》時,列出了三次差的內(nèi)插公式。郭守敬還運用幾何方法求出相當于現(xiàn)在球面三角的兩個公式。
公元1303年,元代朱世杰(生卒年代不詳)著《四元玉鑒》,他把“天元術(shù)”推廣為“四元術(shù)”(四元高次聯(lián)立方程),并提出消元的解法,歐洲到公元1775年法國人別朱(etienne bezout)才提出同樣的解法。朱世杰還對各有限項級數(shù)求和問題進行了研究,在此基礎(chǔ)上得出了高次差的內(nèi)插公式,歐洲到公元1670年英國人格里高利(james gregory)和公元1676一1678年間牛頓(issac newton)才提出內(nèi)插法的一般公式。
公元十四世紀我國人民已使用珠算盤。在現(xiàn)代計算機出現(xiàn)之前,珠算盤是世界上簡便而有效的計算工具。