數(shù)學(xué)手抄報
數(shù)學(xué)中學(xué)辦報內(nèi)容:數(shù)學(xué)的結(jié)構(gòu)
許多如數(shù)、函數(shù)、幾何等的數(shù)學(xué)對象反應(yīng)出了定義在其中連續(xù)運(yùn)算或關(guān)系的內(nèi)部結(jié)構(gòu).數(shù)學(xué)就研究這些結(jié)構(gòu)的性質(zhì),例如:數(shù)論研究整數(shù)在算數(shù)運(yùn)算下如何表示.此外,不同結(jié)構(gòu)卻有著相似的性質(zhì)的事情時常發(fā)生,這使得通過進(jìn)一步的抽象,然后通過對一類結(jié)構(gòu)用公理描述他們的狀態(tài)變得可能,需要研究的就是在所有的結(jié)構(gòu)里找出滿足這些公理的結(jié)構(gòu).因此,我們可以學(xué)習(xí)群、環(huán)、域和其他的抽象系統(tǒng).把這些研究(通過由代數(shù)運(yùn)算定義的結(jié)構(gòu))可以組成抽象代數(shù)的領(lǐng)域.由于抽象代數(shù)具有極大的通用性,它時?梢员粦(yīng)用于一些似乎不相關(guān)的問題,例如一些古老的尺規(guī)作圖的問題終于使用了伽羅理論解決了,它涉及到域論和群論.代數(shù)理論的另外一個例子是線性代數(shù),它對其元素具有數(shù)量和方向性的向量空間做出了一般性的研究.這些現(xiàn)象表明了原來被認(rèn)為不相關(guān)的幾何和代數(shù)實(shí)際上具有強(qiáng)力的相關(guān)性.組合數(shù)學(xué)研究列舉滿足給定結(jié)構(gòu)的數(shù)對象的方法.